一、网站
二、概述
使用方法:
首先,自行申请应用:https://ai.qq.com/console/application/create-app
然后,获取APPID,APPKEY
生成 Json 请求数据
将请求数据提交给对应API接口
解析响应数据
三、基础函数
因为很多接口的请求数据都有重复的且通用的,所以用下面代码生成公共接口数据
from urllib import parse
import hashlib
import requests as rq
import time
import random
import string
APPID = 1xxxxxxxx # 输入自己的app_id
APPKEY = 'Vxxxxxxxxxx' # 输入自己的app_key
# 下列函数参考于别的网址,侵权删
# 生成sign接口信息,接口鉴权
def get_sign(data):
lst = [i[0]+'='+parse.quote_plus(str(i[1])) for i in data.items()]
params = '&'.join(sorted(lst))
s = params + '&app_key=' + APPKEY
#print(s)
h = hashlib.md5(s.encode('utf8'))
return h.hexdigest().upper()
# 生成time_stamp
def get_time_stamp():
return (int)(time.time())
# 生成nonce_str的
def get_nonce_str():
nonce_str = ''.join(random.sample(string.ascii_letters + string.digits, 16))
return nonce_str
四、接口学习
1、智能闲聊接口
示例程序(python):
def chat(question):
# 下面两个函数请看上一章节
nonce_str = get_nonce_str()
time_stamp = get_time_stamp()
app_id = 1xxxxxxxxx # 你的app_id
url = 'https://api.ai.qq.com/fcgi-bin/nlp/nlp_textchat' # api网址
# 请求json数据
data={
'app_id' : app_id,
'time_stamp': time_stamp,
'session' : '10000',
'question': question,
'nonce_str':nonce_str
}
data['sign'] = get_sign(data) # 函数在上一章节,生成sign数据
r = rq.post(url,data = data) # 发送post请求
answer = r.json()['data']['answer'] # 响应数据的答案,可以自行打印一下json的数据来看看
return answer
2、语音合成接口(文字转语音
示例程序(python):
from playsound import playsound
import base64
import time
def ToFile( data, fileName): # 将base64文件解密,然后保存在fileName的文件中
ori_image_data = base64.b64decode(data)
fout = open(fileName, 'wb')
fout.write(ori_image_data)
fout.close()
def text_to_voice(text, speaker = 6 , format = 2 , volume = 0, speed = 100 , aht = 0 , apc = 58 ):
url_request = 'https://api.ai.qq.com/fcgi-bin/aai/aai_tts' # 有两个api,我们用其中的一个
# 替换掉以下字符,不然输出的时候出bug
text.replace('~',',')
text.replace(';','。')
text.replace('“',',')
text.replace('”',',')
# 同上章节
time_stamp = get_time_stamp()
nonce_str = get_nonce_str()
app_id = 1xxxxxxxxx # 你的app_id
data = {
'app_id':app_id,
'time_stamp': time_stamp,
'nonce_str': nonce_str,
'speaker': speaker,
'format': format,
'volume': volume,
'speed': speed,
'text': text,
'aht': aht,
'apc': apc
}
data['sign'] = self.inter.get_sign(data)
header = {
}
header['Content-Type'] = 'application/x-www-form-urlencoded'
# header需要加这个参数,不然会报4096错误
# 这个官方文档写的需要get请求,但是实际上是post才行
r = rq.post(url_request,headers = header,data = data)
answer = r.json()
# 生成文件名(以时间戳),因为返回的数据是音频,所以我们需要先保存在本地,然后进行播放
localtime = time.localtime(time.time())
filename = './' + str(localtime[0]) + str(localtime[1]) + str(localtime[2]) + str(localtime[3]) + str(localtime[4]) + str(localtime[5]) + '.wav'
# 将base64编码保存为文件,前面提到的一个函数
ToFile( answer['data']['speech'] , filename)
playsound(filename) # 这个是python第三方库
# os.remove(filename + tuozhan) # 如果就在这里删除好像会报错
return answer # 返回响应json数据
3、语音识别接口(语音转文字
示例程序(python):
import time
import pyaudio
import wave
import base64
# 录音
# 需要额外安装python库
# 安装pyaudio库,这个有点困难,需要参看:https://zhuanlan.zhihu.com/p/62455580
def recording( record_time = 3 ):
CHUNK = 1024
FORMAT = pyaudio.paInt16 # 设置格式
CHANNELS = 1 # 设置通道数
RATE = 16000 # 设定采样频率
RECORD_SECONDS = record_time # 设定计时秒数
# 时间戳保存文件,以wav格式
localtime = time.localtime(time.time())
filename = './' + str(localtime[0]) + str(localtime[1]) + str(localtime[2]) + str(localtime[3]) + str(localtime[4]) + str(localtime[5])
filename = filename + '.wav'
WAVE_OUTPUT_FILENAME = filename
p = pyaudio.PyAudio()
stream = p.open(format=FORMAT,
channels=CHANNELS,
rate=RATE,
input=True,
frames_per_buffer=CHUNK)
frames = []
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
data = stream.read(CHUNK)
frames.append(data)
stream.stop_stream()
stream.close()
p.terminate()
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb') # 保存为文件
wf.setnchannels(CHANNELS)
wf.setsampwidth(p.get_sample_size(FORMAT))
wf.setframerate(RATE)
wf.writeframes(b''.join(frames)) # 以bytes格式写入文件中
wf.close()
return filename # 返回保存的文件名
def ToBase64(file): # 将文件转成base64编码格式的字符串
with open(file, 'rb') as fileObj:
image_data = fileObj.read()
base63_data = base64.b64encode(image_data)
# 没有这一句就会报16388错误,因为我们需要转换成字符串进行提交吧
base64_data = base63_data.decode("utf-8")
return base64_data # 返回base64编码数据,且是字符串形式
def voice_to_text( speech , format = 2, rate = 16000 ):
url_request = 'https://api.ai.qq.com/fcgi-bin/aai/aai_asr' # 用的是短语音识别,不是流
# 同上
time_stamp = get_time_stamp()
nonce_str = get_nonce_str()
app_id = 1xxxxxxxxx # 你的app_id
data = {
'app_id': app_id,
'time_stamp': time_stamp,
'nonce_str': nonce_str,
'format': str((int)(format)),
'speech': speech,
'rate': str((int)(rate))
}
data['sign'] = self.inter.get_sign(data)
header = {
}
header['Content-Type'] = 'application/x-www-form-urlencoded'
r = rq.post(url_request,headers = header,data = data)
answer = r.json()['data']['text']
return answer
结束语
相信学了这么多,应该多少对这个有点了解了吧,还有更多的Ai接口等待你们去玩。
如果需要现成可运行代码:我的GitHub项目地址
记得更改appid和appkey哦!!!