空间曲线与切线

注意,说的是空间,那就涉及到三个变量。

(1)参数方程

{x=x(t),y=y(t),z=z(t),tI\begin{cases}x= x(t),\\y=y(t),\\z=z(t), \end{cases} t \in I

在点p(x0,y0,z0),(t=t0)p(x_0,y_0,z_0),(即t = t_0)处的切向量τ=(x(t0),y(t0),z(t0))\boldsymbol{\tau} = (x'(t_0),y'(t_0),z'(t_0))

切线方程:xx0x(t0)=yy0y(t0)=zz0z(t0)\frac{x-x_0}{x'(t_0)} = \frac{y-y_0}{y'(t_0)} = \frac{z-z_0}{z'(t_0)}

法平面方程:x(t0)(xx0)+y(t0)(yy0)+z(t0)(zz0)=0x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0

(2)用方程组给出

{F(x,y,z)=0G(x,y,z)=0\begin{cases}F(x,y,z)=0\\G(x,y,z)=0 \end{cases}

(F,G)(y,z)0{x=x,y=y(x),z=z(x),\frac{\partial (F,G)}{\partial(y,z)} \neq 0\quad \Rightarrow\quad \begin{cases}x=x,\\y=y(x),\\z=z(x), \end{cases} 其中(F,G)(y,z)=FyFzGyGz\frac{\partial (F,G)}{\partial(y,z)} =\left| \begin{array}{ccc} \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial G}{\partial y} &\frac{\partial G}{\partial z} \end{array} \right|

P(x0,y0,z0)P(x_0,y_0,z_0)切向量τ=(1,y(x0),z(x0))\boldsymbol{\tau} = (1,y'(x_0),z'(x_0))

切线方程:xx01=yy0y(x0)=zz0z(x0)\frac{x-x_0}{1} = \frac{y-y_0}{y'(x_0)} = \frac{z-z_0}{z'(x_0)}

法平面方程:(xx0)+y(x0)(yy0)+z(x0)(zz0)=0(x-x_0)+y'(x_0)(y-y_0)+z'(x_0)(z-z_0)=0

空间曲面与法线

(1)隐式方程

F(x,y,z)=0F(x,y,z) = 0

在点P(x0,y0,z0)P(x_0,y_0,z_0)法向量n=(FxP0,FyP0,FzP0)\boldsymbol{n} = \left(F'_{x}|_{P_0}, F'_{y}|_{P_0}, F'_{z}|_{P_0} \right)

切平面方程:FxP0(xx0)+FyP0(yy0)+FzP0(zz0)=0F'_{x}|_{P_0}\cdot(x-x_0) + F'_{y}|_{P_0}\cdot (y-y_0) + F'_{z}|_{P_0} \cdot (z-z_0) = 0

法线方程:xx0FxP0=yy0FyP0=zz0FzP0\frac{x-x_0}{F'_{x}|_{P_0}} = \frac{y-y_0}{F'_{y}|_{P_0}} = \frac{z-z_0}{F'_{z}|_{P_0}}

(2)显式函数

z=f(x,y)F(x,y,z)=f(x,y)z=0z = f(x,y)\quad \Rightarrow \quad F(x,y,z) = f(x,y)-z = 0

在点P(x0,y0,z0)P(x_0,y_0,z_0)法向量n=(fx(x0,y0),fy(x0,y0),1)\boldsymbol{n} = \left(f'_{x}(x_0,y_0), f'_{y}(x_0,y_0), -1 \right)

切平面方程:fx(x0,y0)(xx0)+fy(x0,y0)(yy0)(zz0)=0f'_{x}(x_0,y_0)\cdot(x-x_0) + f'_{y}(x_0,y_0)\cdot (y-y_0) - (z-z_0) = 0

法线方程:xx0fx(x0,y0)=yy0fy(x0,y0)=zz01\frac{x-x_0}{f'_{x}(x_0,y_0)} = \frac{y-y_0}{f'_{y}(x_0,y_0)} = \frac{z-z_0}{-1}

(3)参数方程

{x=x(u,v)y=y(u,v)z=z(u,v)\begin{cases} x = x(u,v)\\y = y(u,v)\\z=z(u,v) \end{cases}

u=u0,v=v0u = u_0,v=v_0时,有点P(x0,y0,z0)P(x_0,y_0,z_0)

固定v=v0uPv=v_0 \Rightarrow u在P切向量τ1=(xu,yu,zu)P0\boldsymbol{\tau_1} = (x'_u, y'_u, z'_u)|_{P_0}

固定u=u0vPu=u_0 \Rightarrow v在P切向量τ2=(xv,yv,zv)P0\boldsymbol{\tau_2} = (x'_v, y'_v, z'_v)|_{P_0}

曲面的法向量垂直于τ1τ2n=τ1×τ2=ijkxuyuzuxvyvzvP0=(A,B,C)\boldsymbol{\tau_1}、\boldsymbol{\tau_2} \Rightarrow \boldsymbol{n} = \boldsymbol{\tau_1} \times \boldsymbol{\tau_2} = \left| \begin{array}{cccc} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ x'_u& y'_u& z'_u \\ x'_v& y'_v& z'_v \end{array} \right|_{P_0} = (A,B,C)

切平面方程:A(xx0)+B(yy0)+C(zz0)=0A(x-x_0) + B(y-y_0) + C (z-z_0) = 0

法线方程:xx0A=yy0B=zz0C\frac{x-x_0}{A} = \frac{y-y_0}{B} = \frac{z-z_0}{C}

总结空间曲面与空间曲线

  • 抓住曲面的法向量与曲线的切向量

曲线的投影

Γ={F(x,y,z)=0G(x,y,z)=0\Gamma = \begin{cases}F(x,y,z) = 0\\G(x,y,z) = 0 \end{cases}消去z即可得到在xOy的投影{ϕ(x,y)=0z=0\begin{cases}\phi(x,y) = 0\\ z= 0 \end{cases}

曲线的旋转(P358)

1、绕坐标轴旋转

绕谁转,谁不动,另一个变成其和第三个的平方和开根号:2+2\sqrt{另^2 + 三^2}

具体来说:$$

2、绕一般直线旋转

曲线:Γ={F(x,y,z)=0G(x,y,z)=0\Gamma = \begin{cases}F(x,y,z) = 0\\G(x,y,z) = 0 \end{cases},直线:xx0m=yy0n=zz0p\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}

向量的运算

  • 三向量共面:[abc]=(a×b)c=axayazbxbybzcxcycz=0[\boldsymbol{abc}] = (\boldsymbol{a}\times\boldsymbol{b})\cdot\boldsymbol{c} = \Leftrightarrow \left| \begin{array}{ccc} a_x & a_y &a_z\\b_x&b_y&b_z\\ c_x&c_y&c_z \end{array} \right| = 0

直线与平面关系(P359)

平面束方程

 假设平面1、2方程:{A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0,其中A1,B1,C1A2,B2,C2\begin{cases} A_1x+B_1y+C_1z+D_1=0 \\ A_2x+B_2y+C_2z+D_2=0 \end{cases},\quad 其中A_1,B_1,C_1与A_2,B_2,C_2不成比例。设L为两个平面的交线,则过该交线的平面束方程设为:μ(A1x+B1y+C1z+D1)+λ(A2x+B2y+C2z+D2)=0,μ,λ\mu (A_1x+B_1y+C_1z+D_1) + \lambda(A_2x+B_2y+C_2z+D_2) = 0,\quad \mu,\lambda为参数。

 除此之外,对于具体题目,如果说过该交线的平面,但是不是平面1(2)的方程,那么就将上述的μ\muλ\lambda)设置为1。

点到平面的距离

P(x0,y0,z0)P(x_0,y_0,z_0)到平面Ax+By+Cz+D=0Ax+By+Cz+D = 0的距离d=Ax0+By0+Cz0+DA2+B2+C2d = \frac{\left|Ax_0+By_0+Cz_0+D\right|}{\sqrt{A^2+B^2+C^2}}

直线、平面之间的关系

 抓住直线的切向量与平面的法向量,那么问题就迎刃而解了。

场论初步

方向导数(值)

 设函数u=u(x,y,z)u=u(x,y,z)在点P0(x0,y0,z0)P_0(x_0,y_0,z_0)的领域内有定义,那么u(x,y,z)u(x,y,z)在点P0(x0,y0,z0)P_0(x_0,y_0,z_0)的方向导数的定义应该是:

ulP0=limt0+u(P)u(P0)t=limt0+ux(P0)Δx+uy(P0)Δy+u(P0)Δz(Δx)2+(Δy)2+(Δz)2=ux(P0)cosα+uy(P0)cosβ+u(P0)cosγ=(ux(P0),uy(P0),u(P0))(cosα,cosβ,cosγ)\frac{\partial u}{\partial \boldsymbol{l}}|_{P_0} = \lim\limits_{t\to 0^+}\frac{u(P)-u(P_0)}{t}= \lim\limits_{t\to 0^+}\frac{u'_x(P_0)\Delta x + u'_y(P_0)\Delta y+u'(P_0)\Delta z }{\sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2}} \\= u'_x(P_0)\cos \alpha + u'_y(P_0)\cos\beta +u'(P_0)\cos\gamma \\= (u'_x(P_0), u'_y(P_0),u'(P_0))\cdot (\cos \alpha,\cos\beta ,\cos\gamma )

其中,t=(Δx)2+(Δy)2+(Δz)2,cosα,cosβ,cosγt = \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2}, \quad \cos\alpha,\cos\beta,\cos\gamma为方向余弦。

梯度(向量)

gradup0=(ux(P0),uy(P0),uz(P0))\boldsymbol{grad} \quad u|_{p_0} = (u'_x(P_0) , u'_y(P_0), u'_z(P_0))

当梯度与方向ll同向时,方向导数最大,方向导数为梯度的模:gradup0=[ux(P0)]2+[uy(P0)]2+[uz(P0)]2\left| \boldsymbol{grad} \quad u|_{p_0} \right| = \sqrt{[u'_x(P_0)]^2 + [u'_y(P_0)]^2+ [u'_z(P_0)]^2}

散度(值)

设向量场A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k\boldsymbol{A}(x,y,z) = P(x,y,z)\boldsymbol{i}+Q(x,y,z)\boldsymbol{j}+R(x,y,z)\boldsymbol{k}

散度定义为:divA=Px+Qy+Rzdiv \boldsymbol{A} = \frac{\partial P}{\partial x}+ \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z},散度为0的场叫做无源场

旋度(向量)

设向量场A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k\boldsymbol{A}(x,y,z) = P(x,y,z)\boldsymbol{i}+Q(x,y,z)\boldsymbol{j}+R(x,y,z)\boldsymbol{k}

旋度为:rotA=ijkxyzPQR\boldsymbol{rot\quad A} = \left |\begin{array}{ccc} \boldsymbol{i} & \boldsymbol{j} &\boldsymbol{k} \\ \frac{\partial}{\partial x} &\frac{\partial}{\partial y} &\frac{\partial}{\partial z} \\ P &Q &R \\ \end{array}\right|,若旋度为0向量的场叫做无旋场